One-dimensional self-assembly of planar pi-conjugated molecules: adaptable building blocks for organic nanodevices.

نویسندگان

  • Ling Zang
  • Yanke Che
  • Jeffrey S Moore
چکیده

In general, fabrication of well-defined organic nanowires or nanobelts with controllable size and morphology is not as advanced as for their inorganic counterparts. Whereas inorganic nanowires are widely exploited in optoelectronic nanodevices, there remains considerable untapped potential in the one-dimensional (1D) organic materials. This Account describes our recent progress and discoveries in the field of 1D self-assembly of planar pi-conjugated molecules and their application in various nanodevices including the optical and electrical sensors. The Account is aimed at providing new insights into how to combine elements of molecular design and engineering with materials fabrication to achieve properties and functions that are desirable for nanoscale optoelectronic applications. The goal of our research program is to advance the knowledge and develop a deeper understanding in the frontier area of 1D organic nanomaterials, for which several basic questions will be addressed: (1) How can one control and optimize the molecular arrangement by modifying the molecular structure? (2) What processing factors affect self-assembly and the final morphology of the fabricated nanomaterials; how can these factors be controlled to achieve the desired 1D nanomaterials, for example, nanowires or nanobelts? (3) How do the optoelectronic properties (e.g., emission, exciton migration, and charge transport) of the assembled materials depend on the molecular arrangement and the intermolecular interactions? (4) How can the inherent optoelectronic properties of the nanomaterials be correlated with applications in sensing, switching, and other types of optoelectronic devices? The results presented demonstrate the feasibility of controlling the morphology and molecular organization of 1D organic nanomaterials. Two types of molecules have been employed to explore the 1D self-assembly and the application in optoelectronic sensing: one is perylene tetracarboxylic diimide (PTCDI, n-type) and the other is arylene ethynylene macrocycle (AEM, p-type). The materials described in this project are uniquely multifunctional, combining the properties of nanoporosity, efficient exciton migration and charge transport, and strong interfacial interaction with the guest (target) molecules. We see this combination as enabling a range of important technological applications that demand tightly coupled interaction between matter, photons, and charge. Such applications may include optical sensing, electrical sensing, and polarized emission. Particularly, the well-defined nanowires fabricated in this study represent unique systems for investigating the dimensional confinement of the optoelectronic properties of organic semiconductors, such as linearly polarized emission, dimensionally confined exciton migration, and optimal pi-electronic coupling (favorable for charge transport). Combination of these properties will make the 1D self-assembly ideal for many orientation-sensitive applications, such as polarized light-emitting diodes and flat panel displays.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diamondoids and DNA Nanotechnologies

Diamondoids are cage-like saturated hydrocarbons consisting of fused cyclohexane rings. The Diamondoids family of compounds is one of the best candidates for molecular building blocks (MBBs) in nanotechnology to construct organic nanostructures compared to other MBBs known so far. The challenge is to find a route for self-assembly of these cage hydrocarbons and their applications in the bottom-...

متن کامل

Short self-assembling peptides as building blocks for modern nanodevices.

Short, self-assembling peptides form a variety of stable nanostructures used for the rational design of functional devices. Peptides serve as organic templates for conjugating biorecognition elements, and assembling ordered nanoparticle arrays and hybrid supramolecular structures. We are witnessing the emergence of a new phase of bionanotechnology, particularly towards electronic, photonic and ...

متن کامل

The DFT chemical investigations of optoelectronic and photovoltaic properties of short-chain conjugated molecules

The research in the short-chain organic -conjugated molecules has become one of the most interesting topics in the fields of chemistry. These compounds have become the most promising materials for the optoelectronic device technology. The use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing its efficiency. The control of the band gap of th...

متن کامل

Non-Traditional Aromatic Topologies and Biomimetic Assembly Motifs as Components of Functional Pi-Conjugated Oligomers

This article will highlight our recent work using conjugated oligomers as precursors to electroactive polymer films and self-assembling nanomaterials. One area of investigation has focused on nonbenzenoid aromaticity in the context of charge delocalization in conjugated polymers. In these studies, polymerizable pi-conjugated units were coupled onto unusual aromatic cores such as methano[10]annu...

متن کامل

Principles of molecular assemblies leading to molecular nanostructures.

Self-assembled physisorbed monolayers consist of regular two-dimensional arrays of molecules. Two-dimensional self-assembly of organic and metal-organic building blocks is a widely used strategy for nanoscale functionalization of surfaces. These supramolecular nanostructures are typically sustained by weak non-covalent forces such as van der Waals, electrostatic, metal-ligand, dipole-dipole and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Accounts of chemical research

دوره 41 12  شماره 

صفحات  -

تاریخ انتشار 2008